您的位置:文秘网 > 论文范文 > 教学论文 > 正文

初中数学学科教学论文七篇

教学论文范文 相关范文 编辑:夏桐 发布时间:2019-4-15

初中数学学科教学论文七篇

下面是文秘网的小编为各位收集的初中数学学科教学论文七篇,请您参阅!如您需要符合您实际要求的,那么您可以点击网页两侧的QQ:4000121855和在线客服,我们将为您提供最优质的一对一服务哦!

【篇一】

【摘要】数形结合是初中数学教学的重要内容。以现阶段初中数学教学情况为基础,结合近年来数形结合的应用特点,明确新课改提出的教学要求,深层探索如何在初中数学教学中运用数形结合,以此提升课堂教学效率,实现预期设定的教学目标。

关键词:数形结合;初中;数学教学;新课改

数学教学工作一直都是学校和教师关注的焦点内容。了解初中数学教学工作可知,这一阶段有很多数学知识,学生感觉难懂,而教师也难教,一方面是因为数学知识过于抽象,需要记忆的内容较多,对刚进入全新教学环境的初中生而言负担较重,另一方面在于学生学习兴趣不高。因此,教师要在实践教学中进行深层探索,明确学生学习数学的能力,注重调动他们自主学习意识和兴趣,以此强化他们的思维逻辑和解题技能。下面主要分析数形结合在出中国数学教学中的应用。

1.在教学工作中导入数形结合

在初中数学教学中引用数形结合实施教学工作,最重要的就是做好课程导入。了解实践案例可知,在教学中引用数形结合思想最大的优势在于,可以引导学生更快掌握所学知识,并对其有系统化的掌控,而后可以在现实生活中合理引用。数形结合思想的应用,不但能集中学生学习注意力,而且可以激发他们自主学习的意识,以此促使他们更好参与到教师设计的教学活动中,活跃课堂氛围【1】。一般情况下,教师在初中数学课堂中导入数形结合主要引用如下方式:例如,教师在引导学生学习苏科版八年级数学下册 9.2中心对称与中心对称图形时,最重要的是让学生理解“中心对称”的概念,以及可以判断哪些图片是中心对称图形,此时因为学生之前已经学习了全等三角形,所以教师可以先让学生拿纸画出一个全等三角形,而后结合课本提供的定义去判断所画的全等三角形是否属于中心对称图形。这样不但可以让学生在直观观察图片的同时理解和记忆所学知识,而且有助于学生巩固之前学习的内容,符合新课改教学要求,可以实现预期教学目标。教师在初中数学课堂中导入数形结合理念,可以引导学生进入到一个轻松、自由的学习环境中,以此调动他们学习数学的兴趣。

2.在教学工作中展开数形结合

在教学工作中,除了要在课程中导入数形结合,也可以在课堂中展开数形结合,以此全面展现数形结合的精妙之处。了解现阶段初中数学教学工作可知,其最大的问题在于学生的学习兴趣难以一直维持,学生在学习新知识时总会出现抵触心理,尤其是在认真学习后无法解决实际问题的情况下,更容易产生厌恶心理,长此以往势必会降低学生学习数学的热情,因此教师要在课堂中要与学生有效沟通,结合学生学习需求,构建全新的教学环境。为了解决这一问题,教师要有责任、有意识的全面推广数形结合观念,帮助学生更快掌握学习重点。例如,教师在引导学生学习苏科版数学新版九年级下册《二次函数》时,因为这类知识不只在初中书写占据重要地位,对后续高中数学教学也有一定影响,因此需要教师和学生加以关注。函数应用是初中数学最常见的问题,此时教师可以结合经典例题,引用数形结合的思想在黑板上进行图形演示和推理,以此帮助学生更快理解所学内容。具体问题如下:

如图,二次函数y=ax2+bx+c的图象开口向上,图象过点(-1,2)和(1,0),且与y轴相交与负半轴.以下结论(1)a>0;(2)b>0;(3)c>0;(4)a+b+c=0;(5)abc<0;(6)2a+b>0;(7)a+c=1;(8)a>1中,正确结论的序号是___________.

解析:面对这类问题,已经提供了函数图象,此时只需要学生结合图象进行深层探索,而教师要做好引导工作。①由抛物线的开口方向向上,可推出a>0,正确;②因为对称轴在y轴右侧,对称轴为x=>0,又因为a>0∴b<0,错误;③由抛物线与y轴的交点在y轴的负半轴上,∴c<0,错误;④由图象可知:当x=1时y=0,∴a+b+c=0,正确:⑤∵a>0,b<0,c<0,∴abc>0,错误;⑥由图象可知:对称轴x=>0且对称轴x=<1,∴2a+b>0,正确;⑦由图象可知:当x=-1时y=2,∴a-b+c=2---(1)当x=1时y=0,∴a+b+c=0---(2( )1)+(2 ),得2a+2c=2  ,解得a+c=1,正确;⑧∵a+c=1,移项得a=1-c,又∵c<0,∴a>1,正确。故正确结论的序号是①④⑥⑦⑧.

3.在教学工作中升华数形结合

在初中数学教学中,除了引用数形结合方法实施导入教学和展开教学外,教师也可以对其进行升华。简单来讲,数形结合思想可以帮助学生更快理解所学知识,激发他们内心深处的学习兴趣,而对其进行升华就是培育学生数学思维,帮助他们构建正确的学习意识和习惯,以此为后续学习奠定基础【2】。

结束语

综上所述,数形结合思想对初中数学教学工作而言,不但可以帮助学生更好理解和记忆所学知识,而且有助于提升课堂教学效率,优化学生学习数学的水平,进而实现预期设定的教学目标。因此,在新课改背景下,教师要在明确学生学习需求的基础上,合理引用数形结合思想。

参考文献

[1]陈勇兴.数形结合思想在初中数学教学中的运用探讨[J].当代教研论丛,2018(04):64-65.

[2]陈宝华.数形结合思想在初中数学教学中的渗透探究[J].新课程导学,2018(09):83.

【篇二】

内容摘要: 数学实验教学是初中数学教学的一条全新的思路,是一种十分有效的再创造式数学教学方法。数学实验教学是再现数学发现过程的有效途径,它为学生提供了主体参与、积极探索、大胆实践、勇于创新的学习环境,提供了一条解决数学问题的全新思路。

关键词:   数学实验教学  动手操作  创新思维  数学应用意识  

《数学课程标准》指出:“学生的数学学习内容应当是现实的,有意义的,富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”大数学家欧拉说:数学这门科学需要观察,也需要实验。实验是科学研究的基本方法之一,数学也不例外。不能设想,所有的数学知识和方法都可以离开实验而仅仅通过计算或推理得到。然而,由于学生所学的数学知识都是前人发现并经过严格论证的真理,因此,过去学生的数学活动大多表现为以归纳和演绎为特征的思维活动,简约了数学的发现过程。传统数学教学常常把数学过分形式化,忽视探索重要数学知识形成过程的实践活动,制约了学生的发展。数学实验教学是再现数学发现过程的有效途径,它为学生提供了主体参与、积极探索、大胆实践、勇于创新的学习环境,提供了一条解决数学问题的全新思路。信息技术与数学课程的整合,更为数学实验教学开辟了无限广泛的前景。

根据初中生的心理特征,他们喜欢动手操作,喜欢把新的数学知识跟现实生活、自己的经验联系起来,喜欢富有挑战性、新颖性、开放性的问题,笔者在教学实践中发现:在初中数学教学中恰当地引入数学实验是引导学生发现问题、提出猜想、验证猜想和创造性地解决问题的有效途径。在数学教学中让学生动手做数学实验,开启学生“数学的眼睛”,激发学生用数学的眼光探索数学的新知识,是调动学生热爱数学,学好数学,用好数学,发现步入数学殿堂大门的十分有效的数学教学方法。下面举几个例子,谈谈自己的一些做法。

一、 借助数学实验教学,引导学生加深对概念的理解。

通常数学概念教学是教师给出概念,学生加以记忆,但学生往往对其本质属性理解不够,一知半解,更别提运用了。列夫托尔斯泰曾说:“知识,只有当它靠积极的思维得来,而不是凭记忆得来的时候,才是真正的知识。”新理念就要求教师在概念教学中注重知识的生成,引导学生从已有的知识背景和活动经验出发,提供大量操作、思考与交流的机会,让学生经历观察、实验、猜测、推理、交流与反思等过程,进而在增加感性认识的基础上,帮助学生形成数学概念。

案例1:无理数的概念教学

实验准备:课前准备一把剪刀、两张同样大小的正方形纸片(边长视为1)、计算器。

实验要求:1.让学生利用这些工具剪拼出面积为2的正方形;

2.利用计算器探求的小数部分。

实验说明:考虑到本节课的特点和随着学生年龄的增长,他们的思维水平也在不断提高,为此直接提出富有挑战性的数学问题“拼得的正方形的面积是多少?”“它的边长是多少?”“估计的值在哪两个整数之间?”“能用分数表示吗?”引导学生进行数学实验与探索,发展抽象思维能力.在探索了以上几个问题的基础上,学生真实体会到了面积为2的正方形的边长不能用有理数来表示,但它确实存在,切身感受到除有理数外还有一类数——点出概念“无理数”。

实验结果:拼图对学生来说易如反掌,通过动手操作,班级交流,全班一致认为最容易、最美观的拼图是:

因为已经学习了算术平方根的概念,学生马上就说出了大正方形的边长是。但接下去的“用计算器探求的小数部分”就有点困难了。教师提示:(1)输入大于1小于2的数,平方的结果比2大了,怎样调整?结果比2小呢?(2) 我们能否找到一个有限的小数,使得它的平方刚好等于2?(3)大家有没有发现1.4142…出现循环,那你认为在省略号的背后, 有没有可能出现循环?从而引导学生体验到:事实上, =1.4142…是一个无限的小数。在动手操作实验和展示结果的过程,增强学生的感性认识、培养合作精神,并从中体验成功的喜悦,加深了对概念的理解。

二、数学实验教学,有助于培养学生发现数学规律

数学规律的抽象性通常都有某种“直观”的想法为背景。作为教师,就应该通过实验,把这种“直观”的背景显现出来,帮助学生抓住其本质,了解它的变形和发展及与其它问题的联系。传统数学课堂教学压缩了学习知识的思维过程,往往造成感知与概括之间的思维断层,既无法保证教学质量,更不可能发展学生的学习策略。新理念提倡重视过程教学,在揭示知识生成规律上,让学生自己动手实验,自己去发现数学规律,从而理解更深刻。

案例2: “探究活动”:

1. 一张纸的厚度为0.09mm,那么你的身高是纸的厚度的多少倍?

2. 将这张纸安图2-14的方法(图略)连续对折6次,这时它的厚度是多少?

3. 假设连续对折始终是可能的,那么对折多少次后,所得的厚度可以超过你的身高?先猜一猜,然后计算出实际答案。你的猜想符合实际问题吗?

实验准备:全班每四人一组,每人准备一张A4型号白纸。

实验要求:让学生将手中的纸安要求对折,并记录每一次对折后纸张的层数,计算出它的高度,寻找出数据变化的规律,并解决上述问题。

实验结果:问题1学生很快就解决了。解决问题2时,学生列出了这样一份表格: 

学生动手操作,找到规律,很快就解决了问题3。

三、通过数学实验,培养学生的创新思维能力。

学生的创新思维往往来自与学习过程中的思维“偏差”和好奇心。学生在传统的教学模式中,往往 表现为随着时间的推移,好奇心越来越弱,越来越顺着老师讲课的思维想问题,思维中的“偏差”越来越少,思维的亮点也越来越少。而实验教学恰恰是提供学生探索发现、尝试错误和猜想检验的机会,只要教师善于发现学生的闪光点,善于捕捉学生思维“偏差”的契机,恰当引导,有时实验教学会收到意想不到的效果。

案例3:在上一案例教学时,有一次,一个学生问:“我第7次折就折不起来了,纸这么小,要折到人这么高,该怎么折?”马上有很多学生也积极响应了这一疑问,也有学生说拿很大的纸就能折很多层。学生忽视了题中的“假设”,一个虚拟的问题变成了棘手的课堂突发事件。怎么办?

我马上让学生再用练习本的纸做折纸实验:四人分别用(1)练习本大小的纸(2)练习本一半大小的纸(3)练习本四分之一大小的纸(4)两张练习本大小的纸重叠(看作练习本大小两倍的纸已经对折了一次)的纸对折,看各自最多能对折多少次?

实验结果显示:按题中的方法对折,不论纸张大小,第6次对折都能完成,小的纸张第7次对折就比较勉强,第八次对折就难以完成了;大的纸可对折7次,第八次就难以完成,超过8次是不可能的。

教师趁机提问:一张纸对折了7次后,厚度是原来的多少?而宽度又是原来的多少?

学生再次实验后得出:一张纸对折了7次后,厚度是原来的128倍,而宽度则是原来的,这样就接近了可以对折的极限。课堂实验后,我又布置了课外实验:找你认为很薄的纸和很大的纸,再做对折实验,探究纸张对折的极限。

实践证明:学生在思维“偏差”的引导下动手实验,学到了教材上学不到的知识,使学生通过学数学而变得聪明起来。

四、利用数学实验,强化学生的数学应用意识

应用数学知识解决实际问题,是数学教学的出发点和归宿。发展学生的应用意识是数学教学的重要目标之一。 通过数学教学,帮助学生树立数学应用意识是素质教育的一项重要任务。这就要求教师必须创设一种实验环境,使学生能受到必要的数学应用的实际训练,否则强调应用意识就成为一句空话。

案例4:学校每年要举行运动会,运动会后,我结合“一元一次方程的应用)一节内容编了这样一组应用题,作为拓展训练:

1.在校运会1500m长跑运动场上,起跑5分钟后,甲运动员比乙运动员多跑了一圈(本校操场一圈为200 m),假设两人的速度不变,甲比乙早多少时间到达终点?此时乙离终点还有多少米?

2.在3000m长跑比赛中,运动员乙的速度是每分钟80米,运动员甲的速度是乙的倍,现在甲在乙的前方50米处,问:几分钟后甲乙两人相遇?他们会第二次相遇吗?全程比赛中他们一共有几次相遇?

表面上题目是行程问题中的“相遇”题型,学生根据与实际生活相联系,分析出实际上是“追及”题型的应用题。 这些应用到的数学知识虽简单,但与实际生活紧密联系的却并不多,通过实验,使学生领悟到跑道上也蕴含着丰富的数学知识。这样不仅能够激发学生学习数学的兴趣,还能激励学生多把数学知识应用于生活。

学生在实验情境中的“做”中学,对知识形成过程,对问题发现、解决、引伸、变换等过程的实验模拟和探索,这种实验式的教和学拓宽了学生的思维活动空间,使他们的思维更有深刻性和批判性。同时,它不仅仅关心学习者“知道了多少”,更关心学习者“知道了什么”、“怎样知道的”。它追求的不仅仅是解决了数学问题,更重要的是理解、发现和创造,是解决问题的数学精神和乐趣。这是一种新的求实精神,因而它更多的是对传统数学教学的矫正,至少也是一种有益的补充。 伴随着CAI技术的日新月异,数学实验的教学内容将逐渐增加,实验素材库将不断壮大,实验技术将更为先进与精巧,因而数学实验的教学思想和模式将具有更为广阔的天地、更为重大的作为。

让我们合理运用实验教学,充分发挥其作用,倡导学生主动参与、交流、合作、探究等多种学习活动,改进学习方式,使学生真正成为学习的主人。 从小培养学生科学的研究态度,拓展思路,形成创新意识,最终培育出更多高素质的优秀人才。

参考文献:

1.《浅谈新课标下如何引导和培养学生提出数学问题》,陈志明,《中学数学教育》

2.《用发现式实验开启学生的“数学之眼”》,李世杰,《中学数学教育》

3.《对数学实验教学的理解》林光来,浙江教育网。

4.《新理念下数学实验教学的作用及优化策略初探》,李莉,中学学科网。

5.《走进数学实验   挖掘教学亮点》,910中国教育交流网。

6.《初中数学新课程标准》苏科版。

【篇三】

摘要:现代认知心理学研究告诉我们,学生学习数学的过程实际上就是一个数学认知的过程,在这个过程中学生在老师的指导下把教材知识结构转化成自己的数学认知结构。数学认知结构是数学知识结构与学生个体心理结构相互作用的产物。因此,注重对学生数学认知结构的研究,帮助学生建立良好的数学认知结构,也就成为我们广大数学教师值得认真研究的课题。本文就数学认知结构的涵义、数学认知结构的基本特点、良好的数学认知结构的基本特征及其构建途径等问题进行阐述。

关键词:数学教学、认知结构、认知构建

一、数学认知结构的涵义

所谓数学认知结构,就是数学知识结构与学生个体心理结构相互作用的产物,是学生头脑中的数学知识、技能按照自己的感知、记忆、表象、想象、思维等认知操作组成的一个具有内部规律的整体结构,是教材上的数学知识结构通过“内化”而来的。其内容包括数学知识和这些数学知识在头脑里的组织方式与特征。数学认知结构既包括作为数学知识内容的表象、概念和概念体系,又包括掌握相应知识内容所必须的思维能力,因而数学认知结构是主观内在的能动的东西,即就是说,其中潜藏着解决数学问题的能力。

数学认知结构是数学课程与教材的知识组织体系,是数学科学的系统性与科学性的反映。既可以用概念、原理和法则的结构与层次描述出来,也可以用图式描述出来,它是一种客观存在。数学认知结构并非数学知识结构的直接反映,实际上,由于人们对数学知识在感知、理解、选择和组织方面的差异,同样的数学知识结构在不同人的头脑中会形成不同的数学认知结构。因此,数学认知结构受个体认知特点的制约,具有浓厚的认知主体性与强烈的个性色彩。

二、数学认知结构的基本特点

1.数学认知结构是数学知识结构与学生心理结构相互作用的产物。学生的数学认知结构是由教材知识结构转化而来的,它一方面保留了数学知识结构的抽象性和逻辑性等特点,另一方面又融进了学生感知、理解、记忆、思维和想象等心理特点,它是科学的数学知识结构与学生心理结构相互作用、协调发展的结果。在其发展过程中两者表现出互相影响、互相促进、辩证统一的发展态势,一方面数学知识结构直接影响着学生心理结构的发展,不仅规定着数学认知结构的内容和发展方向,同时还制约着学生感知、理解等心理活动的过程和方式;另一方面学生的心理结构又不断地改造着数学知识结构,使数学知识结构变成与他们心理发展水平和认知特点相适应的数学认知结构。正是由于学生心理结构对数学知识结构的主观改造,导致了学生数学认知结构的个体差异。

2.数学认知结构是学生已有数学知识在头脑里的组织形式。从学生构建数学认知结构的过程和方式来看,他们都是以原有知识为基础对新的数学知识进行加工改造或者适当调整自己的数学认知结构,然后按照一定的方式将所要学习的新知识内化到头脑里,使新旧内容融为一体,形成相应的数学认知结构,并通过这种形式把所学数学知识储存下来的。由此表明,就其形态而言,数学认知结构又是学生已获得的数学知识和数学经验在头脑里的组织形式,这种组织形式反映了数学知识内化到学生头脑里以后的结构状态。有关研究表明,数学认知结构在学生头脑里是呈板块结构的。具体来讲,源源不断的新知识内化到头脑里以后,在新旧内容相互作用的基础上,学生将所掌握的数学知识形成若干系统,由此在头脑里组成相应的数学知识板块,板块的大小和多少直接受所学数学知识内容的多少的制约和影响。呈板块结构状态的数学知识既便于储存,又便于提取。

3.数学认知结构是一个不断发展变化的动态结构。由于学生的数学认知结构是在后天的学习活动中逐步形成和发展起来的,所以它又是一个不断发展变化的动态结构,其动态性主要表现在以下几个方面。一是数学认知结构的建立要经历一个逐步巩固的发展过程。对某一具体数学知识的学习来说,学习初期,学生在老师的帮助下通过原有认知结构和新知识的相互作用,只能在头脑里形成相应数学认知结构的雏形,其结构极不稳定,需要紧跟其后的有效练习和在后继内容学习中的进一步应用,所形成的数学认知结构才能逐步巩固和稳定。二是学生头脑里的数学认知结构经过不断分化逐步趋于精确。学习初期学生头脑里形成的数学认知结构是笼统的,甚至是模糊的,随着认知活动的不断深入,他们头脑里的数学知识经过不断分化才能形成比较精确的数学认知结构。

4.数学认知结构是一个多层次的组织系统。数学认知结构是一个相对的概念,它的内容是一个多层次的庞大系统。既可以是大到包括整个小学数学知识系统在内的数学认知结构,也可以是小到由一个概念或命题组成的数学认知结构。数学认知结构的层次性主要是由数学知识结构内部的层次性和逻辑系统性决定的,原则上数学知识有怎样的分类,学生的数学认知结构就有怎样的划分。

三、良好数学认知结构的基本特征

数学教学的主要目的就是使学生形成良好的数学认知结构,进而发展学生的数学思维能力、数学应用能力与数学创新能力。那么,良好的数学认知结构必须具备哪些基本特征呢?如果把学生在中学阶段所形成的认知结构看成一个大系统,那么各学科的认知结构就是组成这个大系统的子系统,而数学认知结构则是其中居有特别重要地位的一个子系统。在促进学生的认知结构沿着既定目标演化的过程中,是否能够发挥出最佳功效,这是衡量数学认知结构质量水平的总的标准。具体说来,一个良好的数学认知结构需要具备信息贮存量大、有序化程度高和开放性好三个基本特征。

1. 信息贮存量大

内容丰富、知识(信息)贮存量大,这是良好数学认知结构首要的基本特征。按照系统论的观点,系统要从外界获得信息,系统内必须具有可以同化新信息的适当组元,并且,系统内已有信息的概括程度愈高,同化新信息的能力越强。在数学认知结构中,所包括的信息是多方位、多层面的,它不仅包含教材中的数学知识结构中的定义、定理、公理、法则,还包括学生用来同化这些新知识所需要的感觉、知觉、记忆、思维、联想等认知材料,更包括吸纳新知识所需要的数学思想和方法。显而易见,信息贮存量大的数学认知结构更易促进数学新知识有意义的内化,使数学认知结构得以迅速的扩充和发展。

2. 有序化程度高

系统论有序性原理指出:一个系统内各基本要素间的协同作用是导致系统内部宏观有序的内部原因,要充分发挥系统的功能,就要使系统内部各要素排列、组合和层次有个合理、恰当的安排。单纯的数学知识在头脑中堆积,不等于数学认知结构的形成,只有使各个孤立、零散的知识系统化、条理化,才能形成数学认知结构。毋庸置疑,知识在内容组织上的有序化程度,是衡量认知结构质量好坏的一个重要标志。一个良好的数学认知结构,应当是依据数学知识间的有机联系和逻辑顺序而形成的层次分明、脉络清晰、整体性强的知识网络。认知结构的有序化程度愈高,新知识愈能迅速地在原有认知结构中找到其理想的固着点。

3. 开放性好

开放性指学生所具备的数学知识与其他学科知识间的相互联系,良好的数学认知结构与其它各学科之间能相互渗透、衔接合理,能在更广泛的知识领域内促进知识的横向迁移,根据系统理论的观点,一个系统的开放性越好,与外界的联系越多,其适应性就越强,越有利于目标的实现。良好的数学认知结构必须具有开放性好的属性,方能充分发挥各学科间的协同作用,提高学生综合应用各种知识分析解决实际问题的能力,促进各学科认知结构同步、协调地向前发展。

总之,一个良好的数学认知结构应当是一个内容丰富、组织合理、开放型的动态知识结构系统。

四、良好的数学认知结构的构建途径

构建学生良好的数学认知结构,必须熟悉学生原有的数学认知结构的状况,寻找新知识和学生数学认知结构中已有知识的最佳同化渠道,充分展示数学严密有序的知识结构和组织结构。同时,还应该认真研究相关学科,熟知它们与数学学科的交叉点与数学学科的延续性和互补性,使新旧知识、数学与非数学知识在学生头脑中相互融合,从而达到构建良好数学认知结构的目标。本人认为构建良好数学认知结构有以下的基本途径:

1. 深入了解学生原有的数学认知结构,准确把握教学起点

学生掌握数学知识的能力随年龄的增长、智力的发展、认识结构的发展而发展。如果我们把学生的数学认知结构看成是后天习得的经验系统,研究表明,这种经验系统对数学学习的影响程度比智力更大,丰富的经验背景是理解数学知识的前提,否则将容易导致死记硬背知识的字面定义而不能领会其内涵的局面。

数学学习中,经验对新知识学习的影响更多地表现在数学结构的组织和再组织上。有的学生能够从过去的经验中找出与新知识相关的观念,在比较它们的异同的基础上建立起新旧知识的联系进而达到对新知识的理解,而有的学生则会受这种经验的干扰,对新知识产生错误的理解。因此,要发展学生良好的数学认知结构,教师必须熟悉学生原有的数学认知结构,判断学生用来同化数学新知识的原有知识是否巩固和清晰,从而把握教学起点,进行有针对性的教学,以便将数学新知识纳入学生原有的数学认知结构之中。

2. 创设问题情境,引发认知碰撞

现行的教科书是按照“定义—定理,公式,法则—应用”这样的逻辑顺序编辑的,这种逻辑顺序与原数学研究活动顺序是相反的,与学生数学学习的思维活动顺序,即“问题—定理,公式,法则—定义”的顺序也是相反的,虽然教科书也可以提供一定的实际问题,然后再概括出定理,法则,公式等,但这种进程在教科书上只能是十分简约的,由于学生的学习要大致经历原数学研究活动的进程,因此,教师不能照本宣科,否则,必然使数学学习进程与学生的数学思维进程不一致,从而使学生的思维活动无法充分展开,学生已有的数学认知结构与新知识之间的相互作用不充分。因此,教师要把教材提供的逻辑顺序转变为数学活动顺序,并结合学生的数学思维发展水平,要尽量通过创设各种问题情境,引发学生主动地进行思考和探究,使师生间教与学的相互作用进入优化、高效的状态,促进学生认知结构的改组与重建。

3. 构建知识网络,揭示数学知识的有序性

传统的教学比较重视教材的知识结构和逻辑结构的传授,而忽视了学生头脑中的认知结构,而认知心理学不仅重视教材的知识结构和逻辑结构的教学,而且十分重视对学生头脑中的认知结构的研究。著名教育心理学家奥苏贝尔认为,有意义的学习就是把新知识和原有知识联系起来,将新知识纳入到学习者原有的认知结构之中。他说:富有意义的新思想是通过把它归类到一个已经存在着的认知结构(一个互相联系着的知识网)中去才被学会的。但是,应当明确,学生头脑中的认知结构与教材上所展示的知识结构不是一回事,它们至少存在以下三个方面的区别:

首先,知识的表达方式不同。教材上的知识主要是以文字符号详细表达的,而学生头脑中的知识主要是简约化了的语言文字符号所代表的意义,也就是说,详细的资料是靠简化的表达方式保存在学生的记忆里的,头脑中知识的表现形式是学习者智力活动的结果和认知方式的体现。因此,认知结构已经将知识和个人的智力活动方式融为一体,是两者的有机统一和结合。

其次,知识的构造方式不同。教材上的知识前后的顺序性和逻辑性很强,而学生头脑中的知识的顺序性淡化了,以另外的方式构造起来,既是累积的又是有等级的,是一个层次结构和网络结构。

再次,知识的完备性不同。教材上的知识是完备的、无缺口的、系统的,而学生头脑中的知识结构由于遗忘规律的作用,往往是有缺口的,是很不完备的和系统性较差的,书上的知识经过老师的讲解之后,学生不一定能将其准确地纳入到自己的认知结构当中。学生头脑中的知识结构千差万别,有的学生的知识结构系统性较好,层次较分明,在利用已有知识解决新问题时,能够迅速、准确地提取出来。而有的学生的知识结构是零散的,层次性较差,比较混乱,遇到该用已有知识解决问题时,就会提取困难或提取错误。这就是优生和中差生产生显著差别的原因之一。有的学生学习成绩好,对所学概念、定律、规则等的理解和运用能力强,不是因为他具备的知识更多,而是因为对已有的知识组织得更好。这好比一个图书馆,如果里面的书籍杂乱无章,乱堆乱放,我们要找某一本书时,就会感到困难重重。但是,如果书本存放有序,层次分明,就很容易找到我们所要找的书。因此,老师在讲课时,不仅要把课本上的知识结构讲清楚,而且,更重要的是要把书本上的结构严谨的知识转化成与学生头脑中的知识结构相适应的,便于学生接受的储存和知识,同时,还要注意到每个学生头脑中的知识结构并不一致,讲课要照顾到各个学生之间的这种差异,因材施教。这样,学生在用已学知识解决新问题时才会提取顺利。

4. 钻研教材,理清教材的逻辑结构和新知识的呈现序列

美国教育家、心理学家布鲁纳强调:课程应偏重于“学科的结构”,“不论我们选教什么学科,务必使学生理解该学科的基本结构”。因此,要注意引导学生熟悉数学教材的逻辑结构,包括熟悉教材内容各部分之间关系(从属关系、交叉关系、矛盾关系、对立关系等等)和一定范围内容的整体结构,从微观和宏观上予以把握。再者,教师在教学中以何种顺序和方式呈现知识,对学生良好认知结构的构建至关重要。只有准确把握数学知识间的有机联系,并据此设计出最佳的知识呈现序列,才有助于学生良好数学认知结构的形成。在设计数学知识呈现序列时,必须考虑以下两点:第一,向学生呈现的新知识,在学生的原认知结构中都应有它的前站知识,从而为后续知识的切入做好准备。

5. 突出数学思想方法的教学,充分沟通数学与其他学科的广泛联系

数学认知结构是一个开放系统,一方面它本身在不断地变化、发展、完善,另一方面它与其他系统之间不断地交换能量、信息,同时它更为其它学科认知结构的构建提供技术支撑。技术支撑最突出表现就是解决问题的数学思想方法。

数学思想方法在数学认知结构中是具有十分重要的作用,从知识角度看,数学思想方法是数学知识的有机组成部分,是数学知识的灵魂;从技能角度看,数学思想方法又是进行智力操作的策略和手段。另外,许多数学知识又具有方法性功能。理论研究与人才的轨迹都表明,数学思想方法在人才培养和素质提高方面具有重要的作用,因此,在数学认知结构的构建过程中,应当突出数学思想方法的教学,努力帮助学生建构思想方法层次上的数学观念,其中包括基本方法(如配方法、换元法、待定系数法等),又包括思维方法(如类比、分类、分析、综合、归纳等),更包括高层次的思想观念(如方程思想、函数思想、化归思想、特殊与一般互化思想等),这既是构建学生良好数学认知结构的需要,更是当前数学教学改革的需要。

参考文献:

1.顾明远,孟繁华.国际教育新理念[M].海口:海南出版社,2001.

2.周国萍.建构主义教学观评析[J].集美大学学报,2003.

3.张建伟.从传统教学观到建构性教学观[J].教育理论与实践,2001.

4.张奠宙.数学教育学[M].南昌:江西教育出版社,1991.

5.刘兼.21世纪的数学教育展望[M].北京:北京师范大学出版社,1995.

【篇四】

内容提要:本文通过教学实践中两个具体的典型事例,揭示了“不起眼的学生也会有丰富的想象力和惊人的创造力”的论点,从而在课堂内外开展了开发、培养和发展广大学生的想象力和创造力的竟争积分的激励机制,创新地将数学辅导课改为“创新成果展示课”(学生戏称为“创新博览会”),为广大同学建立创新档案(“创新风云录”),并适时评比、总结、推广。实践表明,不仅促进了学生的创新知识结构的完善,而且创新的思维水平和综合素质也得到了提高和发展;可以说,创新结出了硕果。

论文关键词:从学生中来,到学生中去,创新,竟争积分

一、回首往事,有喜更有思

几年前,在做“化简:(x-y)(x+y)(x2+y2)(x4+y4)(x8+y8)”时,有个成绩一直较差的学生却很快地做了出来:原式=x2*8-y2*8=x16-y16;还有一次,在做“已知:AB=AC,AD=AE求证:⊿BEO≌⊿CDO”时,竟有一位成绩一般的学生用割补原理简洁地证了出来。当时,我就感觉眼前一亮,为这两位学生的独创性解法而振奋不已;而更让我眼前一亮的却是06年参加中考改卷时:有一道裁剪拼图的实验活动题,从卷面上看,不少成绩较好或者说是很好的同学,得分并不怎么样;而一些成绩较差或者说是很差的同学,得分却很可以,有的还很高。

可以说,这三类现象让我惊喜,让我振奋,更让我深思:“看来,我们的学生中,也正如一位名人所说的那样――你的教鞭下,可能会有牛顿、爱迪生、…”。这就需要我们在平时注意充分挖掘、催生广大学生的创新火花,高度重视创新意识的开发和创新能力的培养,力争做发现和塑造创新“千里马”的好伯乐,杜绝做摧残乃至扼杀创新嫩芽的刽子手。基于此,本人在深思熟虑的基础上,引入竟争激励机制,摸索开展了“从学生中来,到学生中去”的创新尝试,也收到了一定的效果,不妨介绍一下。

二、激发创新火花看课堂

课堂是放飞广大学生求知启智的主战场,也是开发创新意识、激发创新火花的强磁场。

基于这一点,我在分析了新课标教材特点和学生普遍有表现欲的特点的基础上,在课堂上引入了竟争积分的激励机制——课堂上,一般的提问、板演答做对,得100分;而对超越课本答出有价值的新想法、新观点的或给出创新解法的,奖10—30分;对成绩中等偏下的学生在同等条件下再加奖10—20分。

竟争积分的激励机制措施一出台,立即引起了轰动效应:课堂上提问、板演时,同学们争着举手,课堂气氛活跃多了,效果自然也就有了明显的提高。

三、放飞创新羽翼看课外

课外是放飞学生创新羽翼的精彩蓝天,也是铸造学生创新品格和成果的大熔炉。

再高效的课堂上,学生获得的创新知识和能力也是有限的。也许,教师在课堂上教给学生的只是几块通往创新殿堂的敲门砖。当广大学生的创新欲望在课堂上被激发出来后,教师应充分引导他们在课外拓展创新的空间。

基于此,我高度重视学生们在课外的创新活动,也制定了相应的激励机制———课外的创新成果相应地给予翻一番的奖励。

此措施一出台,又立即在课外掀起了创新的热潮。不少平时不大认真学习的学生、成绩偏差的学生有时也会兴冲冲地跑来向我展示他的创新成果。而验证学生的创新成果,成了我的一种独特的享受,也成为师生间的一种心灵的交流,我自然也乐在其中。

四、内外融合催燃创新之火

为了让广大学生能充分了解、学习和应用彼此的创新成果,我将每班每周的数学辅导课改为“创新成果展示课”(学生戏称为“创新博览会”)。

所谓“创新博览会”就是请创新者将创新成果在班级里展示出来,并用创新者姓名命名为“***观点、规律、猜想、公式或解法,继而作适当的概括总结后,要求其他同学学会推广应用。在此基础上,又按班级为各个人建立创新档案,美其名曰“创新风云录”,其上详细记载各个同学的创新情况。

针对现在广大同学流行的“追星”倾向,每月就创新情况总结一次,评出该月的创新之星与创新明星组,每学期大总结一次,并发给奖状和奖品。促使大家变羡慕、想当梦幻的影视明星为争当班级的创新明星。

无疑,这一切就像催化剂一样,让广大学生的创新火焰熊熊燃烧起来了。

五、创新真谛创新悟

综上所述,所谓“从学生中来,到学生中去”就是通过适当有效的手段,在开发广大学生的创新意识、培养学生的创新能力的同时,收集、论证、筛选学生们的创新成果,再将之展示、推广给广大学生应用。实践表明,这也是行之有效的,尤其是对低年级的学生们。不仅大大激发了广大学生的创新欲,鼓舞了广大学生的创新热情,而且在思维深处也为学生们点燃了创新的星星之火。

总之,通过有效地放飞学生们的创新个性,使学生们的知识沸腾起来了。不仅促进了学生的创新知识结构的完善,而且创新的思维水平和综合素质也得到了提高和发展。从效果上看,不仅积极创新的同学的成绩有了大幅度的上升,而且创新学生多、创新势头足的班级的成绩更是有了明显提高。可以说,创新结出了硕果。

真是“不创新不知道,一创新真奇妙”!在创新的尝试中,本人越来越感到趣味无穷,也更深刻地认识到创新教育确实堪称是素质教育的核心和重中之重。也许可以化用陶行知老先生的话来概括:处处是创新之地,天天是创新之时,人人是创新之才。教育教学工作也贵在创新,只有不断地创新,才能时刻洋溢着虎虎生气,教育事业也才能充满勃勃生机而永葆青春。这一点,其实已基本成为教育界的共识。今后,我誓将沿着创新之路继续走下去,力争不断推陈出新,为广大学生营造肥沃的创新土壤!

【篇五】

我国古代教育家朱熹曾说过:“教人未见其兴趣,必不乐学。”可见,培养学生学习兴趣是何等的重要。尤其是农村学生在改革开放、经济又快又好发展这一巨大洪流的冲击下,厌学现象普遍存在,致使发生学生流失。面对这种情况,我们每名老师都应千方百计培养学生的学习兴趣,只要有了兴趣,学生就会喜爱读书,这无疑对提高整个中华民族的文化素质具有深远的意义。

《数学新课程标准》指出:“重视从学生的生活经验和已有的知识中学习数学和理解数学。”“数学教学要紧密联系学生的生活环境,从学生经验和已有的知识出发,创设有助于学生自主学习、合作交流的情景,使学生通过观察、操作、归纳等活动,掌握基本的数学知识和技能,发展他们的能力,激发对数学的兴趣,以及学好数学的愿望。”在教学实践中,笔者感觉到培养数学兴趣比教会学生解题能力更加重要。

一、数学问题具有真实的生活背景。 学生平时做的练习题大多都是经过人为加工的纯数学问题,尽管有的问题题材来源于实际生活,但是大部分通过精加工以后都变成了纯粹的“应用题”模型。实际上编题者(老师)代替学生完成了从实际生活中收取信息这一过程,学生只要把自己熟悉的方法或公式“复制”到模型中去就能够解决问题,降低了学生理解问题、分析问题的能力。严峻的事实告诉我们,在日常的教学中,教师应该尽可能多地给学生呈现生活中的现实问题,或是只是对现实问题进行简单加工处理,千万不要“浓缩”成百分百的纯数学问题。

二、让数学学习回归生活实际 。我们说数学源于生活,生活中的数学是具有鲜活力的,一切脱离生活实际的教和学都显得苍白无力。因为学生都没有做过生意,自然就不会知道生意之道。如果在讲这道题前,教师利用学生中的家长、亲戚、朋友等熟人中做生意的资源,分小组,联系好以后,开展一些数据的调查、收集,然后再与店主进行交流,实地观察、采访一些顾客等一系列的活动,我想到那时,教师想让他们沉默,他们也都不会愿意。因此,教师应在日常的教学众多引导学生开展一些小调查、小实践、小试验、小研究等应用性的活动,促进学生将数学知识融入到火热的生活中去,增强应用数学的能力。鼓励学生应用生活的经验解决数学的问题,提高数学的理解力。还可以组织学生进行一系列专题性的数学实践活动。作为教学一线的教师,我们有必要赋予学生一双“数学”慧眼,培养学生具有关注社会、关注生活、关注自我的意识。

(一)创设生活情景,培养学生的学习兴趣。爱因斯坦说过:“兴趣是最好的老师。”因此在数学教学中,教师应结合教学内容创设生活的情景,把生活中的数学原形生动地展现在课堂中,让学生从周围熟悉的事物中学习数学和理解数学。如:在教学“平均数”时,选出两队进行拍球比赛,每组三人参加,其中一人做记录。比赛后,老师将总成绩公布于众;然后老师帮助输了的那组拍球,结果老师参与的那组转败为胜,为此,同学们纷纷举手表示老师的不公平,即人数不等。从而为学习平均数创设了情景,使学生们积极思维,找出“公平”的办法,这样,既激发了学生的学习兴趣,又培养了学生的学习能力,也获取了新知。

(二)动手实践,提高学生学习的兴趣。《新课标》指出:“有效的数学学习活动不是单纯地依赖、模仿和记忆,而动手实践,自主探究,合作交流才是学生学习的主要方式”。根据小学生好奇、好动的心理特点,在课堂教学中,适当增加动手操作的机会,让学生通过看、摸、折、剪、摆、画等实际操作,使多种感官一起参与活动,让无意注意和有意注意有机结合,促进学生把外界的活动和内隐的思维活动紧密联系起来,使学生从直观的操作到形象思维,从感性认识上升到理性认识。强化了对数学概念的理解和记忆。既提高了学生的操作能力,又培养了学生的创新精神。

三、灵活设计练习,增强学生的学习兴趣    在课堂学习中,应力求形式新颖,寓教于乐,减少机械化的程序,增强学生的学习兴趣如:习题设计,可用学生喜欢的小动物的眼睛出示数字,在动物的鼻子上出示运算符号。这样把静止不动的习题予以拟人化,变静为动。

四、即时多元评价,打破学生的沉默  “亲其师,信其道。”教学过程中,缺乏教师的激励性和肯定的评价,教学是算不上成功的。如果教师对每个学生的每一个合理的想法都给予肯定,使学生得到心理上的满足,体验到成功的喜悦,以达到强化学习动机,增强学习的信心和目的性。强化学生好的一面,用亲切的言语鼓励尽可能多的学生参与进来。营造一个没有压力,没有权威的课堂氛围,既调动了学生的积极性和学习数学的兴趣,又能有效地培养学生的想象力和思维的灵活性。

如:提供成功机会,给予激励评价。“在人的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”只有通过自己的亲身体验,儿童才会感到自己的力量,才能得到成功的体验。成功的感觉真好,它给人带来的愉悦感会激起一种无法遏止的动力。然而,学生间的差异客观存在,对成功地感受也是千差万别的。那么,怎样才能真正面向全体学生,使每个学生都能体验到成功的喜悦呢?笔者认为,归根到底还是要改革教法和学法:首先,在教学设计中,不能只设计知识的传授方式,还要设计评价方式。在什么地方评价,是老师评价,还是同学评价,还是自我评价……这是要花大力气思考的问题。其次,学法尝试采用“合作学习”、“探究式学习”……只有这样,学生才有机会真正地去发现,不断探索、不断得到老师和同学们的评价和激励,从而不断得到成功的体验。在这种学习过程中,教师还要努力教会学生各种学习策略,使学生形成较强的学习能力。

培养小学生的学习兴趣,方法是多种多样的,每一个老师在教育教学实践中,都应该千方百计去激发和培养小学生的学习兴趣。注重培养学生的学习兴趣,是有利于全面贯彻党的教育方针,有利于全面提高教育教学质量,有利于培养全面发展的优秀人才。

【篇六】

摘要:整理课作为对知识巩固、运用的一个重要环节,是学生将知识深入、细化的一个过程,它不是进行对学生所学知识的简单复习,而是一种更深层次的学习,使学生达到牢固掌握教学知识的目的。生本课堂的最终目的就是以学生是否学的积极、高效、轻松为评价标准。而如何就生本课实现对学生的有效引导,激发学生自主学习也成为了教师亟待解决的一个问题。本文也就生本课堂的数学知识整理课教学策略进行了探讨。

关键词:生本课堂;数学知识;整理课;教学策略

一堂生动、成功的生本课堂旨在大部分时间都是在教师的引导下,学生进行自主学习、合作讨论,成为课堂的主人,这种教学方式,以教师最少的语言启发学生的数学思维,促进学生智慧的提升,让学生在数学课堂愉悦的氛围中实现对知识的有效整理,进一步巩固学生的基础知识,培养学生数学思维能力,提高教学质量。

一.生本课堂数学知识整理课教学的意义与流程

数学知识整理课在整个教学体系中是必不可少的,可以进一步帮助学生掌握数学难点。教师则应该加强对知识整理课的重视程度,以此来激发学生的数学思维,帮助教师进一步弥补在数学教学中的不足之处,提高数学教学质量。因此,在每一个单元的数学学习结束之后,都要组织学生进行一次系统性的知识整理课程予以总结、复习,将所学过的知识点串联起来,帮助学生深入掌握数学难点。

就生本课堂的基本流程来看,具体包括以下几个方面:首先,前置性作业,在数学教学活动中,教师先引导学生自己去领悟课程,不仅仅依靠于教师的讲解,做到把握课程基点;其次,合作学习,生本课堂的原则本就是实现学生为课堂的主人,教师作为引导,在数学学习中,教师应该激励每一位学生积极参与到教学活动中来,以团队合作的形式帮助学生得到不同程度的提升;最后,总结汇报,学生合作学习之后,组织学生进行小组的总结汇报,要求每位学生都要就学习过程中遇到的问题及解决方式进行发言。

二.生本课堂的数学知识整理课教学策略

(一)前置性作业

数学知识本就难点较多,解题方法灵活多样,需要学生具有严谨的数学思维才能实现对数学知识的掌握。因此,在数学教学活动中,教师不应该只是一味的向学生传授知识,而应该引导学生自主探索、学习,总结数学中的难点,进而通过教师的针对性讲解把握数学精髓。在数学知识整理课程中,教师应该引导学生对上一个阶段中所学习的数学知识进行梳理、总结,比如说就长方体的知识点来说,就其面积、体积的计算及概念等予以深入掌握。

(二)合作学习

随着当前教育的不断改革,新教学体制提倡在教学活动中实现学生的主体地位,培养学生的合作精神,因此在生本课堂的数学知识整理课教学中,教师应该引导学生实现合作学习,让每一个学生在小组活动中发挥自身价值,积极总结数学课程中的知识点或者难点,进行组间交流,促使小组学生通过讨论理清数学知识点框架,牢固掌握每一个数学知识点。在生本课堂的数学知识整理课教学中进行合作学习,教师必须要坚持以下几点原则:首先,明确每一组学生的学习任务;其次,鼓励小组学生积极进行组内交流或组间讨论,起到对数学知识查缺补漏的作用;最后,保证每一位学生在小组合作中都能够发挥自身价值,并完成组内作业,使每一位学生的数学能力都能够得到不同程度的提升。

(三)总结汇报

在生本课堂的数学知识整理课堂中,实现小组的数学知识点总结汇报,在这个过程中教师应该要求学生将组内总结的数学知识点系统、全面的向全班学生做汇报,例如就长方体这一节课程的知识点来说,当组内每个学生将长方体相关的知识点汇报完毕之后,教师应该引导学生对其中存在的疑问或者是不足之处予以提出,实现组间的交流互动。另外,在每小组成员进行知识点总结汇报的时候,教师应该对其他小组的作业完成情况予以检查或者是点拨。在这其中需要注意的有以下两个方面:首先,对学生的作业点拨尽量语言精简,把握重点,缩短教师的话语时间,留给学生足够的思考空间;其次,教师对学生的点拨应该是积极向上的,不应该含有打击话语,应该要对学生起到激励作用,进一步提升学生对数学学习的兴趣。

结束语

总而言之,知识整理在数学教学体系中占据着至关重要的位置,对数学教学起到重要作用,可以将繁杂、抽象的数学知识通过整理使之系统化、条理化,促进学生更进一步把握数学知识的难点。同时,生本课堂的主旨就是实现学生在教学活动中的主体地位,教师作为引导者,实现学生的自主学习,之后学生再对自主学习中遇到的疑难之处针对性的听教师讲解,实现根据学生的学习情况予以动态讲解。通过生本课堂的数学知识整理课教学策略提高数学教学质量。

参考文献:

[1]张应贵.小学数学课堂生活化教学策略探究[J].小学科学(教师版).2012(10).

[2]吴天艳.小学数学课堂教学中有效生成策略的研究[J].陕西教育(行政).2012(01).

[3]汪仁苏.数学课堂教学中有效促进动态生成的策略研究[J].考试周刊.2011(32).

【篇七】

摘要:在我国之前的教学方式当中,学生始终是被动接受知识。而随着新课标的开展,以往教学模式没有办法达到目前教学方面所提出的需求。因此,本文主要研究了初中数学互动式教学的设计方式,旨在给其提供一定的参考和帮助。

关键词:初中;数学;互动式教学;设计方式

在现在的初中数学教学当中使用互动式这种教学方法,不仅符合目前教学方面提出的要求,并且还能够有效加强学生的能力和水平。学生在上课过程中进行互动和沟通,学习数学知识,意识到自身存在的缺点。进而提升学生分析和解决问题的能力。这也表明,在初中数学课堂教学过程中,强化互动式教学尤其重要,可以确保课堂教学的有效性。因此,下面将进一步研究初中数学互动式教学的设计方式。

一、初中数学课堂使用互动式教学的作用

互动式这种教学方式目的就是让教师和学生之间能够进行良好的互动,师生互动实际上就是教师和学生二者利用语言和动作以及思想方面的沟通,建立一个相互促进和影响的交流方法。课堂实质就是必须要公平和谐,教师扮演着引导者和监督者的角色,站在学生的视角考虑问题,可以促使学生对教师不再那么惧怕。把教师当作是朋友,在和教师沟通的过程中,经过教师的正确引导,可以让学生充分表达自我意识,将其潜在能力最大限度的开发出来。初中数学教学的时候,教师和学生之间教练,让学生具有一个清晰的学习思路,建立更加立体化的知识系统,并且教师采用的鼓励和肯定能够有效促进学生学习。虽然数学这门课程十分抽象,但是经过采取互动式教学的方式,能够准确的找到促进学生学习的方式,和学生一起提升,增强课堂有效性。

二、互动式教学在初中数学课堂教学中的使用

(一)设计问题

数学源自于生活,所以,教师应该在初中数学教学过程中引进生活的具体,让学生结合生活实际,去理解数学的原理。在刚开始互动式教学的过程中,教师必须要设计问题,这样能够帮助学生进行自主创新和学习的过程,让学生能够思考更深层次的内容,给学生足够的空间和时间,进而给之后实施互动式教学做好铺垫。

例如,在刚上课的时候,提出问题,把两个有理数(其中一个为0)和三个有理数(其中一个为0)以及四个有理数(其中一个为0)等等相乘,计算出结果,是怎样得到结果的。经过设问解答,将该节课程要讲解的内容引出,对几个含零因数相乘的认知,这样能够调动课堂气氛,并且增加了教师和学生之间的交流,进一步提升了课堂教学的效率。

(二)针对教材建立互动平台

初中数学教材包含大量的知识,学生若仅仅利用教学想要真正的理解知识十分困难。教师需要结合教材,创建一个活动的情景,建立一个教师和学生能够进行互动的平台。

例如,在讲解正比例函数这一课程的过程中,教师应该创建一个超市买卖这样的情境活动,让学生扮演买家的角色,购买教师所卖的一个5元钱的物品,同时在开展活动的时候,提出问题,购买4个和15个该物品分别需要多少钱,钱数和物品数量之间有着什么样的联系。这样的问题,是学生日常生活当中均会发生的,学生兴趣比较浓厚,热情高涨,参加和互动的主动性较强,能够激发学生情感以及理性数学思维意识,这样有利于学生理解函数概念。

(三)鼓励支持改进互动流程

初中数学教学在互动的过程中,教师必须要记住一定要对于学生进行鼓励,支持学生勇敢的提出问题,要认同同时给予学生绝对的信任,让学生感觉到学习数学的趣味性。即便是自己回答错了问题,教师也不会责怪自己。在开展互动式教学的过程中,要求敬爱哦时必须要及时的表扬在活动中表现良好的学生,针对那些表现不是很好的学生要进行激励,给予学生完全的信任和尊重,促使学生积极主动的加入到活动当中,进而从根本上提升课堂教学的有效性。

(四)课堂考评加深互动中心

在所有课程完成之后,教师均需要适时的总结和归纳本节课程,这样能够进一步深化互动式教学的功能,明确这节课程互动的核心。教师应该采取设计可以整理这些课程内容的练习,引导学生把全新的概念转变成解决问题的具体技能。

例如,在讲解勾股定理这节课程的过程中,教师可以设计一道必须要使用到勾股定理的生活应用问题,让学生进行解答,学生在解答的时候,就会回想这节课程讲解的具体内容,然后运用学习过的知识去解答问题。能够以较短的时间正确解答这道问题的学生,教师必须要及时的对其进行表扬,对学生进行学习积分,提高学生学习的兴趣。这样的方式,不仅能够让学生把知识体系真正的整合在一起,同时真正的将其运用到解题的过程当中,有效加深了教师在上课过程中所设计的互动中心,进而提升课堂的质量和效率。

结束语:

通过本文对初中数学互动式教学设计方式的进一步分析和阐述,使我们了解到随着新课标的推进,互动式教学变成课堂教学的核心方式,提高互动教学的效果已经成为一个十分重要和必须重视的课题,要求广大初中数学教师必须要清楚继承和创新二者之间的关系,进而充分发挥出互动式教学的作用。因此,希望通过本文的阐述,能够给初中数学互动式教学方面提供一定的参考和帮助。

参考文献:

[1] 宋思运.“互动式”教学模式研究综论[J].教书育人,2014(33).

[2] 徐 敏.小议初中数学课堂中互动教学模式的运用 [J].成

功 (教育),2015(02).

[3] 胡 尚奎.浅谈初中数学互动教学[J].中国科教创新导刊,2015(21).


文章地址:http://www.91wenmi.com/wenmi/lunwen/jiaoxuelunwen/330611.html